
Efficient coherent diffractive imaging for 
sparsely varying objects 

Yoav Shechtman,1,* Yonina C. Eldar,2 Oren Cohen,1 and Mordechai Segev1 
1Physics Department, Technion - Israel Institute of Technology, Haifa 32000, Israel 

2Electrical Engineering Department, Technion - Israel Institute of Technology, Haifa 32000, Israel 
*joe@tx.technion.ac.il 

Abstract: We demonstrate an efficient phase-retrieval method, allowing the 
recovery of features of dynamic objects that are sparsely varying – i.e. when 
the difference between two consecutive frames is small. The method uses 
redundancy in information between similar consecutive frames to recover 
the features more robustly than current phase-retrieval methods, and 
necessitates a considerably smaller number of measurements. Both of these 
features directly lead to shorter acquisition time, paving the way to coherent 
diffractive imaging of fast dynamic processes. Numerical simulations show 
a possible 100-fold improvement in temporal resolution over existing 
methods. 
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1. Introduction 

The spatial resolution of any standard imaging system is fundamentally bounded by Abbe's 
diffraction limit, setting the minimal resolvable feature size even in an ideal imaging system 
to be comparable to one half of the optical wavelength (λ/2). Therefore, direct optical imaging 
of an object with nanometric-scale features, e.g. viruses [1], or nanometric magnetic domains 
in thin magnetic films [2], requires extreme UV or X-ray light. However, focusing a light 
beam or constructing an imaging system at such wavelengths is very difficult, due to the lack 
of suitable optical components. Namely, focusing a hard X-ray beam is typically done with a 
Fresnel zone plate [3] or with focusing mirrors, where in both cases the current focusing 
ability is fundamentally limited to a spot much larger than the wavelength. For example, at 
hard X-ray wavelength (λ ~0.1nm) the current resolution limit, in focusing as well as in 
imaging, is ~10nm, which is ~170 λ [4]. 

Another avenue to overcome this practical resolution limit for imaging applications, at 
extreme UV and X-ray wavelengths, is to use coherent diffractive imaging (CDI) [5,6]. X-ray 
CDI, in its most basic form – plane-wave CDI, consists of illuminating the object with a 
coherent X-ray plane wave, and measuring the diffracted intensity pattern in the far-field [6]. 
The diffracted intensity is then algorithmically inverted to obtain the sought object, most 
commonly by using an iterative phase-retrieval algorithm [7,8]. The loss of information, 
which is inherent in the measurement process – where only the magnitude of the diffraction 
pattern is measured and not the phase – is handled algorithmically using prior knowledge 
about the region where the object resides (the "support"). However, the algorithmic inversion 
process is challenging, and the prior knowledge it requires for successful reconstruction is 
often very precise (e.g., on the location of the object, or the support boundaries, etc.). 
Moreover, all such phase-retrieval algorithms fundamentally require a high signal to noise 
ratio (SNR), and a large number of measurements in the diffraction plane, a criterion known 
as the oversampling criterion. Recent techniques suggested improving the phase-retrieval 
process by use of a phase diffuser to create speckles in the far-field, thereby increasing the 
spatial variation of the measured far-field intensity [9]. However, the SNR is still the limiting 
factor for phase-retrieval problems. For a recent review on CDI see [10]. 

Due to the high SNR and oversampling requirements, the level of signal (light) needed for 
a high quality recovery is large. This can be obtained by using a single intense pulse of light, 
e.g. from a free-electron laser [11,1], or through accumulating a large number of relatively 
weaker X-ray pulses, e.g. from synchrotron radiation [12,13,2], or using light from a high-
harmonic generation process [14]. Since an intense X-ray pulse is destructive for certain 
objects (e.g. proteins), imaging a dynamic process of such an object while it varies in time is 
challenging: It can either be done by destructive pump-probe time resolved imaging, where 
identical copies of a dynamic process are imaged with different time delays between the pump 
and the probe [15,16], or by accumulation of weaker pulses [14,17,18]. However, pulse 
accumulation naturally prolongs the acquisition time necessary for a single image; currently, 
the acquisition time is on the scale of tens of seconds, at least [14,17,18] - far from being 
suitable for real-time dynamic imaging. In the case of lensless imaging (CDI) of magnetic 
structures [2,13], the exposure time may be shorter (~0.2 seconds in [2]) – but the exposure 
time is still limited by SNR. Thus, finding a technique that would work under lower SNR 
could facilitate faster acquisition, thereby improving the ability to track the formation of 
magnetic domains with better temporal resolution. For the specific case of imaging the 
formation of nanometric domains in magnetic films, improving the temporal resolution may 
allow viewing phase transitions as they occur [13]. 

Here, we propose and demonstrate an algorithmic method that performs robust phase-
retrieval of sparsely varying video, i.e. when the difference between two consecutive frames is 
small. The proposed method utilizes the similarity between consecutive frames to compensate 
for the loss of information associated with the measurements. The loss of information is 
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caused primarily by the lack of phase information, but our method compensates also for low 
SNR, and allows using a considerably smaller number of measurements than traditional 
phase-retrieval methods. As such, our method can be used to recover dynamically varying 
objects using a considerably shorter acquisition time compared to existing algorithms, without 
requiring multiple identical samples. Using the sparsity of frame-differences for efficient 
measurements in a tracking system has been recently suggested and demonstrated in a linear 
imaging model [19]. Our current work deals with a different group of problems, namely, is a 
quadratic mathematical problem (phase retrieval). For such nonlinear problems, standard 
linear sparse recovery algorithms are inapplicable. This, together with the motivation to 
pursue sub-wavelength imaging, are the reasons we develop the new methodology presented 
here. Applications of our method may include imaging of moving or changing biological 
specimen, magnetic nano-structure formation, or multiple particle tracking, in all of which the 
improvement of temporal resolution can be greatly beneficial. Imaging magnetic domains 
during their formation is particularly appropriate for our method because the temporal 
variations are sparse, as the domains tend to flip in small groups. Another interesting 
application where our method can be used is for CDI of growing neurons [20] – where, due to 
the nature of the dendritic growth in which most of the neuron remains unchanged, the 
difference between consecutive frames is sparse. Yet another example for a phenomenon that 
conforms to our sparse-variation model is the formation of crystal, such as the colloidal 
crystal dynamically imaged by STED [21]. Our method relies on new ideas associated with 
sparsity-based subwavelength imaging [22–24] and phase retrieval of sparse objects [25–30], 
and utilizes a recently developed efficient greedy algorithm [30] in order to solve the problem. 

2. CDI problem formulation 

In plane-wave CDI, an object is illuminated by a plane wave, and its far field diffraction 
pattern is measured, as depicted in Fig. 1. Therefore, performing CDI amounts to recovering 
the object’s optical transmission function from the magnitude of the diffraction pattern. In the 
far-field, or the Fraunhofer approximation (applicable when 2 1a dλ   and 2 1b dλ  , d  

being the distance between the detection plane and the object, and a  and b  being the radii of 
circles within which the object and its far-field diffraction pattern are localized around the 
optical axis, respectively), the intensity of the diffraction pattern corresponds to the magnitude 
of the Fourier transform of the object [31]. Such is the case when the features of the object are 
large compared to λ, and the diffraction pattern is measured sufficiently far away. 

 

Fig. 1: CDI setup 

Denoting the 2D transmission function of the object as ( ', ')t x y  and the measured intensity 

as ( , )I x y , under the assumptions above, the following relation holds, up to a constant 
multiplicative factor: 
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2

( , ) ,x y
yxI x y T

d d
ν νλ λ
 
  
 

= = =   (1) 

where ( ) ( ) ( ), ', ' exp 2 ' ' ' 'x y x yT t x y j x y dx dyν ν π ν ν 
  

+   is the 2D Fourier transform of 

( ', ')t x y . The mathematical description of the CDI problem is therefore to invert Eq. (1), 

namely to recover the phase of ( , )x yT ν ν - since once its phase is known, it can be inverse-

Fourier transformed to yield ( ', ')t x y . However, due to the missing phase information, the 
inversion problem is ill-posed, and in general some additional prior information is necessary 
in order to solve it. Most commonly, this additional knowledge is about the location of the 
object and its boundaries (its "support"). The support is incorporated into an iterative phase 
retrieval algorithm developed by Fienup [7], attempting to find a solution consistent with both 
the prior information and the measurements. There are several variants of the Fienup 
algorithm [8], and they all work by alternating between imposing real-space constraints (e.g. 
the assumed support of the object) and Fourier constraints – i.e. the measured Fourier 
magnitude. In order to converge to the correct solution, however, they require both 
oversampling, i.e. a larger number of measurements than unknowns (more than twice), and 
high SNR [10]. 

3. Sparsity-based dynamic CDI 

Using CDI to image a dynamic process requires taking a set of far-field measurements at 
consecutive times. In principle, in each temporal segment, the far-field diffraction pattern can 
be captured, its phase can be retrieved using a phase-retrieval algorithm [7], and a snapshot of 
the object can be recovered. However, due to the high SNR requirement of current phase-
retrieval methods, and in order to avoid possible damage to the object, a strong enough signal 
can only be obtained by accumulating many weak pulses. The acquisition time and hence the 
temporal resolution are therefore inherently very slow – on the order of tens of seconds at 
least [14,17,18], rendering current CDI techniques inapplicable for fast imaging dynamic 
processes. 

Here, we suggest and demonstrate a method facilitating considerably shorter acquisition 
times for CDI of dynamically varying objects, and in doing that allowing for improving the 
temporal resolution substantially. Our technique works under the assumption that two 
consecutive frames are similar, rather than treating each temporal frame separately. Under this 
assumption, which is commonly used in applications of video compression [32] and tracking 
systems [19,33], the number of unknowns becomes smaller than the number of measurements. 
At the k'th frame we have the following system of quadratic equations: 

 
2 2

1( , ) ( , ) ( , ) ( , )k k k kI x y t x y t x y t x y−   = = + Δ   F F   (2) 

where ( , )kI x y  is the k'th temporal frame, and F denotes the 2D Fourier transform. The 

difference between consecutive frames, denoted as ( , )kt x yΔ , is therefore sparse, i.e. it 
contains a small number of nonzero elements, when it is spatially discretized. 

In our method for solving the dynamic CDI problem, we shall assume that the first frame 
is measured with high quality – i.e. high SNR and sufficient number of samples. However, 
from then on the following frames can be sampled under less strict conditions (low SNR, 
fewer samples). Under this assumption, after spatial discretization, Eq. (2) translates to 
finding a sparse solution to a set of quadratic equations. 

Finding sparse solutions to underdetermined systems of equations is a problem that has 
been studied extensively in recent years - although until recently all such studies addressed 
linear equations only (see, e.g., [34–37]). In fact, the first studies on finding sparse solutions 
to sets of quadratic equations appeared only in the past two years, in the context of sparsity-
based sub-wavelength imaging [38,39], and have recently been considered in more general 
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contexts [25,26]. In the context of optical imaging, sparsity has also been used in various 
different application such as digital holography [40,41], phase space tomography [42], 
tracking [19,33], and more. Here, in order to solve the quadratic problem, we use a recently 
developed greedy method, based on iterative application of the damped Gauss Newton 
algorithm [30]. 

4. Formulation of the discrete problem 

Discretization of Eq. (2) yields the following vector relation: 

 

 ( ) ( )2 ** * *
1 1 ,i i i i i i

k k k k k k k ky F x x F F x x x F F x x− −= = = + Δ + Δ   (3) 

where 
k

x  is a 2 1n ×  vector representing the n n×  sought object in time k , obtained from the 

discretized 2D object by stacking its columns, and the vector ky  is, similarly, a 
2 1m × column stack of the Fourier intensity measurements. The notation iF  is the i'th row of 

the 2D DFT matrix, so that each element i in 
k

y  is obtained by the absolute value squared of 

the inner product of 
k

x  with the appropriate spatial frequency. Finally, kxΔ  is the frame 

difference vector, i.e. 
1k k k

x x x −Δ − . Equation (3) can be rewritten as a function of the 

unknown frame-differences: 

 

 * * * *

1 1 1 1 ,i i i i i

k k k k k k k k ky x A x x A x x A x x A x− − − −= + Δ + Δ + Δ Δ  

 (4) 

where iA  is a matrix defined by *i i iA F F . The formulation of Eq. (4) shows that, given the 

recovery of the previous frame, 
1k

x − , the measurements are a quadratic function of the frame-

difference vector kxΔ  only. The goal is therefore to find a solution kxΔ  that is consistent with 

the measurements. However, in general, this problem is ill-posed, and the solution kxΔ  is not 
unique. We therefore regularize the problem by requiring the frame-difference to be sparse, 
based on the logic that the object changes only slightly between consecutive time segments. 
As we will see, this essential concept of sparsity enables improved performance over standard 
methods. 

The mathematical formulation we propose is summarized as follows. At each time-
segment k , we seek a vector kxΔ  that is consistent with the quadratic measurement vector 

ky  (through the relation given by Eq. (4)), and is at the same time sparse – i.e. contains a 

small number of non-zero elements. This yields the following optimization problem: 

 
 ( ) ( )( )2*

1 1

1

0

arg min

subject to

k

m

k k k i k k
x i

i
kx y x x A x x

x s

− −
Δ =

Δ = − + Δ + Δ

Δ ≤


  (5) 

where 
0

⋅  denotes the zero-norm, i.e. the number of non-zero elements, and s  is a 

parameter representing an upper limit on the number of nonzero elements in xΔ . 
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5. Solution method – GESPAR 

We find a solution to Eq. (5) by using a slightly modified version of our recently developed 
greedy algorithm for sparse phase-retrieval, named GESPAR, described in detail in [30]. The 
algorithm is based on a local search, where within each iteration we solve a nonlinear least-
squares problem using the damped-Gauss-Newton (DGN) [43] method. Given the previous 

frame
1k

x − , the algorithm produces a solution xΔ  that is both sparse and consistent with the 

quadratic measurements of the current frame. The algorithm’s steps are summarized below: 

1. Select an initial random support for kxΔ , namely the initial locations of the nonzero 
elements in the guessed solution. 

2. Given the support, the problem defined by Eq. (5) reduces to a nonlinear least squares 
problem, which we solve by the DGN algorithm that is commonly used for this type 
of problem. The DGN produces an estimate xΔ . 

3. Calculate the cost function ( ) ( ) ( )( )2*

1 1

1

m

k i k

i

i
kf x y x x A x x− −

=

Δ = − + Δ + Δ , along 

with its gradient around the current estimate xΔ . 

4. Perform a local search by index swapping: replace an index i from the support of 
xΔ containing an element with a small absolute value element with an index j 

containing a high absolute gradient value. Given the new support s, perform DGN, 

obtain 
s

xΔ , and calculate the cost function ( )
s

f xΔ . 

5. Update support: If the cost function is improved, i.e. ( ) ( )
s

f x f xΔ < Δ , then the 

support is updated - i.e. the index i is removed from the support and the index j is 
added to it . Go to step 3. Otherwise, go to 4, until a predetermined number of swaps 
have been performed. If there is no possible improvement in the cost function by 
swapping - go to step 1. 

The procedure stops after a predetermined number of swaps. The output is the solution xΔ  

that yields the lowest value of the cost function ( )f xΔ . Since the algorithm recovers the 
frame-difference at each temporal segment, we avoid carrying a large accumulative error by 

assuming that the initial frame 
0

x  is recovered with high quality, i.e. using sufficient 

measurements and high SNR. The main difference between the method used here and 
GESPAR as detailed in [30] is the fact that here the cost function in the current problem 
contains an additional term linear in xΔ . 

It is important to note that problem (5) is very difficult to solve - it is highly non-convex 
and has combinatorial complexity. In general, there is no guarantee that the true solution or a 
global minimum will be found, and indeed GESPAR finds only a local minimum. However, 
when the sought signal is sparse enough, empirical evidence (based on numerical simulations 
in [30]) suggests that the true solution is found with high probability. In order to avoid 
stagnation of the algorithm, for reasons such as the "twin image problem" [44,45] associated 
with iterated projection algorithms [46], GESPAR includes randomization. Specifically, the 
indices i and j from part 4 in the algorithm are selected randomly from a sub-set of indices. 

6. Simulations 

We test the performance of our algorithm by performing a series of numerical simulations. 
The first simulation examines robustness to noise: The Fourier transform magnitude of a 
simulated object that is varying in time is sampled under various SNR conditions. The real-
space object is then recovered frame by frame, and the recovery is compared with the true 
dynamic object. The recovery result is compared with frame-by-frame recovery using the 
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standard Fienup Hybrid Input-Output (HIO) algorithm [8]. The size of the simulated object is 
51x51 pixels, and the sparsity of each frame-difference is 5s = . The number of Fourier 
measurements taken for each frame in this example is 2601. In all of these simulations the 
number of iterations used in the Fienup HIO algorithm is chosen as 3000, which is sufficient 
for convergence, where the last 600 iterations are averaged to yield the final reconstruction. 
The parameter β  in the HIO algorithm is chosen as 0.5, which yielded the best results. The 
initial guess for HIO in all frames is the clean first frame, which proves to work better than 
other options, such as taking the initial guess as the output of the previous frame. The prior 
support knowledge, needed for the HIO algorithm, is taken as the 31x31 pixel square, visible 
in the videos and in Figs. 2 and 4. The total number of GESPAR swaps is set as 500 for each 
frame. 

Simulated examples showing our sparsity-based reconstruction of dynamically varying 
objects, and comparing to standard HIO reconstruction are shown in Fig. 2 (Media 1) and Fig. 
2 (Media 2). Figure 2 shows two example frames: the left panel shows the true simulated 
object, the center shows our GESPAR recovery, based on frame-difference sparsity, and the 
right panel displays the HIO recovery. In this example, the SNR is 30dB, defined as: 

[ ]
2 2

SNR 20 log || || || ||y n= , where n is an independently and identically distributed (i.i.d.) 

Gaussian noise added to the measurement vector y. In these typical examples GESPAR 
clearly obtains a much better reconstruction than the HIO algorithm, as will be quantified 
next. 

 

Fig. 2: Simulated example frames comparing the quality recovered through our sparsity-based 
phase-retrieval technique with the best result calculated through the Fienup HIO algorithm. (a) 
Frame #2, and (b) Frame #20. The left column shows the true simulated frames, the center 
frame shows our GESPAR reconstruction (Media 1), and the right column shows the 
reconstruction with the standard Fienup HIO (Media 2). SNR=30. The simulated object has 
uniform intensity and phase – i.e. it is opaque. However, the asymmetry of the object means 
that its phase structure in Fourier space is complicated and not binary. 
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The performance of both algorithms under various SNR is displayed in Fig. 3. The 

normalized mean squared error, defined as
22rec

NMSE x x x= − , where x is the unknown 

object and 
rec

x  is the reconstruction, is plotted as a function of frame number for different 

SNR's. 

 

Fig. 3: Reconstruction error (log NMSE) for various noise values for our GESPAR (left) 
algorithm and the Fienup-HIO (right) 

Several conclusions can be drawn from Fig. 3. First, in order to obtain a solution of similar 
quality (measured by NMSE), the HIO algorithm requires a much higher SNR than GESPAR 
algorithm; e.g. the performance of GESPAR under SNR of ~30 corresponds to SNR of ~50 in 
HIO, corresponding to a factor of 10 in the relative signal to noise energy. Since the SNR is 
related to acquisition time, this translates directly to reduction in acquisition time. Namely, 
under the reasonable assumption that the dominant noise factor in the imaging system is shot-
noise, the factor of 10 in signal to noise energy translates to a factor of 100 in acquisition 
time. Second, the visible increase in the error with frame number can be explained by the fact 
that GESPAR iteratively reconstructs only the differences between frames, so the error is 
accumulated. The less apparent increase in the HIO error with frame number is the result of 
the initial guess being more similar to the first frames than to the following frames in our 
example. 

In addition to the considerably superior performance of our algorithm in terms of noise 
robustness, we also examine the performance as a function of the number of measurements 
required for reliable reconstruction. Once again, successful recovery from a small number of 
measurements directly leads to faster acquisition time. For example, several adjacent 
measured pixels can be summed (“binned”) together, yielding a smaller number of 
measurements but a higher SNR. Figure 4 shows two example frames recovered using only 
650 Fourier magnitude measurements (about ¼ of the number used in Fig. 2), located on a 
square grid, and with very low noise (SNR=60). Fienup algorithms are known to require over-
sampling in the Fourier plane [10], therefore the low quality of the HIO reconstruction in Fig. 
4 (Media 4) (right column) is not surprising. Using the sparsity prior information, on the other 
hand, compensates for the considerably lower number of Fourier measurements, leading to the 
high quality reconstruction with GESPAR shown in Fig. 4 (Media 3) (center column). Figure 
5 shows the reconstruction error more quantitatively, as a function of frame number, for both 
algorithms. The reconstruction error increases as a function of frame number in both 
algorithms, for related but different reasons. In the HIO algorithm the reason is that the initial 
guess used for each frame is the clean first frame – which proved to work better than using a 
random initial guess or the output of the previous frame. With time, the object changes more 
and more, so that the first frame becomes a worse and worse initial guess. In contrast, for 
GESPAR, the increase in reconstruction error is mainly due to the accumulating error, which 
results from reconstructing only frame-differences, as discussed earlier. 
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Fig. 4: Simulated example frames comparing the recovery using 650 measurements through 
our sparsity-based phase-retrieval technique with the best result calculated through the Fienup 
HIO algorithm. The left column shows the true simulated frames, the center frame shows our 
GESPAR reconstruction (Media 3), and the right column displays the recovery using the 
standard Fienup HIO reconstruction (Media 4). SNR=60. The simulated object has uniform 
intensity and phase – i.e. it is opaque. 
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Fig. 5: Reconstruction error vs. frame number using GESPAR and HIO algorithms. The 
number of samples is 650. SNR=60. 
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We also test the performance of our GESPAR algorithm under various levels of sparsity, 
as shown in Fig. 6. The reconstruction quality naturally improves as the frame difference is 
more sparse (low values of s). 
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Fig. 6: Reconstruction error vs. frame number for various sparsity levels. SNR=40. Error 
accumulation due to the reconstruction of frame-differences can impose a practical limit on the 
possible number of frames in a reconstructed movie. This can be tackled by performing high-
quality sampling every certain number of frames, dictated by the system's parameters (e.g. 
noise, number of measurements). In this case, it is also possible to further improve performance 
by back-propagation - i.e. using a high-quality frame in order to reconstruct a previous frame. 

The spatial resolution of our technique is an important issue. One may naively think that 
the best resolution is pre-determined by the high-resolution first frame. However, our recent 
work on sub-wavelength imaging demonstrates that it is possible to obtain resolution beyond 
the resolution of the measurement device, which in our current case would correspond to 
improving the resolution beyond the resolution of the first frame. Indeed, current work is 
targeting this goal. 

The limitations of our technique may arise from several causes. Of course, in some cases 
the assumption that the frame-difference is sparse may be inappropriate. Such would be the 
case, for example, if the images of the dynamically changing object are taken at a low rate – 
allowing the object to change significantly between two consecutive frames. Another 
limitation may arise from the fact that the GESPAR algorithm recovers only frame-
differences – implying that the high-resolution first frame is important, and that error will 
generally accumulate with frame number – as our simulation results indeed indicate. The 
temporal resolution of the imaging system, although improved significantly by our method, 
will still ultimately depend on SNR. 

7. Summary and future directions 

We suggested and demonstrated a method to perform fast dynamic CDI, based on the prior 
knowledge that the object changes only slightly (sparsely) in between successive frames. The 
problem was formulated as seeking a sparse solution to a set of quadratic equations, and a 
recently developed algorithm for sparse phase retrieval (GESPAR) is used to solve it. In 
principle, additional prior knowledge about the object can be incorporated into the method in 
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order to further improve the results – with the ultimate goal of relieving the method of the 
need for a clean first frame. 

Importantly, since our method succeeds in recovering the features of an object from only a 
subset of its Fourier spectrum, it can serve as a solid basis for the recovery of sub-wavelength 
features. This is because the problem of sub-wavelength CDI corresponds to recovering an 
object using only the magnitude of its low Fourier frequencies [39]. Indeed, our next goal is to 
employ the current ideas to obtain super-resolution beyond the numerical aperture of the 
system. 
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